


Reprinted from THE JOURNAL OF CHEMICAL PHYSICS, Vol. 38, No. 6, 1282-1287, 15 March 1963 
Printed in U. S. A. 

Relaxation Effects in the Transport Properties of a Gas of Rough Spheres* 

L. MONCEICK 

Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland 

AND 

K. S. Y m  AND E. A. MASON 

Institute for Molecular Physics, University of Maryland, College Park, Maryland 

(Received 12 November 1962) 
/7337? 

The rough-sphere model is investigated in some detail from the point of view of the formal kinetic theory 
of polyatomic molecules developed by Wang Chang and Uhlenbeck, and by Taxman. The purpose is to 
clarify the sources of some discrepancies between the known results for the transport properties of a rough- 
sphere gas and the results recently obtained by Mason and Monchick in an approximate treatment of the 
formal kinetic theory, in which the corrections for inelastic collisions are given in terms of relaxation times. 
It is found that the deviations of the transport coefficients of rough spheres from those of smooth spheres can 
be understood in first approximation as the result of two effects: an enhancement of the backward and side- 
ward scattering of rough spheres over that for smooth spheres, and an apparent resonant exchange of in- 
ternal energy when two rough spheres collide. Since these effects are, for the most part, peculiar to rough 
spheres, it is concluded that the deviations found between the rough-sphere model and the approximate 
theory are not to be expected for real molecules, 

I. INTRODUCTION 

FORMAL kinetic theory of gases which takes A into account inelastic collisions has been de- 
veloped by Wang Chang and Uhlenbeck’ for the semi- 
classical case and by Taxman2 for the classical case as 
an extension of the Chapman-Enskog kinetic t h e ~ r y . ~ . ~  
In its original form the Chapman-Enskog theory is 
strictly applicable only to the noble gases. The new 
formal theory should therefore be much more applicable 
to most gases, but the expressions for the transport co- 
efficients derived from this formal theory are compli- 
cated and the integrals involved appear almost hope- 
lessly difficult, since they require a solution of the 
dynamical problem of inelastic molecular collisions. 
Recently a tractable approximation to the formal 
theory has been proposed by Mason and Monchick: 
who argued that certain terms in the expressions are 
small and can be neglected, and who then were able to 
avoid an explicit evaluation of the remaining integrals 
by expressing them in terms of an experimental quan- 
tity, the relaxation time, or bulk viscosity. That is, the 
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difficult integrals were evaluated by appeal to experi- 
ment rather than to a computer, a t  least to a first-order 
correction for the inelastic collisions (relaxation times). 

There are two customary ways of checking such an 
approximate theory: by comparison with experiment, 
and by comparison with some special model for which 
accurate theoretical calculations can be camed out. 
As far as comparison with experiment was possible, 
the approximate theory checked satisfactorily: al- 
though the comparison was limited by a scarcity of 
data on rotational relaxation times. For Comparison 
with a solvable theoretical model, the rough-sphere 
gas was used. Here the approximate theory was partly 
in good agreement with the rough-sphere model, but 
gave a notable discrepancy in that part of the coeffi- 
cient of thermal conductivity due to the molecular 
internal degrees of freedom. To first order, the transla- 
tional heat conductivity was given exactly and the 
shear viscosity fairly accurately. We have since found 
another large discrepancy in the self-diffusion coeffi- 
cient. These discrepancies might be due either to some 
fundamental fault in the approximate theory, or to the 
physically unrealistic nature of the rough-sphere model, 
which has some features not found in real molecules. 
The latter cause is suggested by the agreement of the 
approximate theory with the experimental thermal con- 
ductivities of polyatomic and polar gases, but the 
point seemed worthy of further investigation. 

It is the purpose of this paper to investigate the rough- 
sphere model in more detail from the point of view of 
the formal kinetic theory, and of its more approximate 
version proposed by Mason and Monchick, with the 
aim of clarifying the sources of the above mentioned 
discrepancies. The exact results for the rough-sphere 
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model have been known for some time: the shear 
viscosity and the two thermal conductivity coefficients 
(translational and internal) were calculated by Pid- 

the diffusion coefficient by Chapman and 
Cowling,' and the relaxation time (or bulk viscosity) 
by Kohler8 and by Wang Chang and Uhlenbeck.' We 
have nothing new to add to these results; we offer only 
some physical interpretations and analogies which we 
believe useful and which we believe point to the special 
pecularities of the model as the source of the dis- 
crepancies rather than to a fundamental defect of the 
approximate theory. 

A few remarks on the rough-sphere model may be 
made here. By "rough" it is meant that when two 
spheres collide their surfaces grip without slipping and 
the relative velocity of the points of contact 
The deviations of the rough-sphere results from the 
smooth-sphere results are usually given in terms of a 
dimensionless parameter, K,  defined as K= 41/ma2 
where I is the moment of inertia of the sphere; m, its 
mass; and u, its diameter. K ranges from 0 to Q .  We 
will usually work only to first order in K ,  since the 
approximate theory gives only first-order corrections. 
To this order, the exact expressions for the viscosity q,  
the self-diffusion coefficient DII, the two thermal con- 
duction coefficients At, and Xin*, and the relaxation 
time 7 are 

(la) 

D11= $[ (amkT)*/ (ru2p)l (1 - R+ * a ) ,  (1b) 

Atr= Y q ( k / m )  (l-+-gK+. * .), (IC) 

Aint=h(k/m) (1+9K+*. a ) ,  ( 1 4  

7+= ?[7r$P/ (7rmk T )  *] (K+ - - * ) , ( 1 4  

r]  = A[ (rmk T) $/ ( r a 2 ) ]  (1 - QK+ - - . ) , 

where p=nm is the gas density and p=nkT is the gas 
pressure. The approximate theory makes no evalua- 
tion of 7, but expresses its corrections in terms of 7 

and then uses Eq. (le) to express these in terms of K .  
The approximate theory then gives no correction to r]  

and Dll to first order in K. This is not so serious for q, 
but represents a rather large error in D11. The approxi- 
mate theory yields the correct value for At,, but for 
Xint it  yields a correction term of #K instead of QK, 
an error of over a factor of 2. 

The rough-sphere model has a physically unrealistic 
feature that has been pointed out by Chapman and 
Cowling? Glancing or grazing collisions for this model 
do not, in general, produce a small deflection in the 
trajectories of the colliding pair, as in most other 
models, but can produce large deflections if the rota- 
tional velocities of the spheres are suitable. Averaged 
over many collisions with many initial angular veloci- 

F. B. Pidduck, Proc. Roy. SOC. (London) A101, 101 (1922). 
7 Reference 3, Chap. 11. * M. Kohler, Z. Physik 124, 757 (1947) ; 125, 715 (1949). See 

also reference 3, pp. 396-398. 

ties, this effect gives rise to an excess of backward 
scattering which appears to be primarily responsible 
for the discrepancy in D11. Similarly, the roughness of 
the sphere gives rise to an excess of sideward scattering 
on the average (Le., scattering around 90" in the center- 
of-mass system). This does not affect D11, but both the 
backward and sideward scattering affect q.  They do so 
in opposite directions, however, and so the net effect 
in q is small. In  other words, rough spheres are better 
scatterers than smooth spheres, since they scatter 
more a t  90" and 180" than do smooth spheres. On the 
other hand, real molecules are usually poorer scatterers 
than smooth spheres, since they scatter more in the 
forward direction. 

Related to the more efficient scattering of rough 
spheres is another effect which does not seem to have 
been noticed before: Averaged over many rotational 
states, a certain fraction of collisions appear to occur 
as if a resonant exchange of internal energy took place. 
That is, it  is us i f  two molecules sometimes collide with 
no change in the magnitude of the relative velocity of 
translation, but with an exchange of purely rotational 
energy. Resonant exchange effects have been observed 
for polar molecules which have long-range dipole 
forces. It is possible that they occur for nonpolar mole- 
cules too, but the effect is probably negligible. 

We wish to emphasize that the above interpretations, 
which are set forth in more detail in the following sec- 
tion, are analogies that are valid only in an average 
sense, when all collisions are considered. They are cer- 
tainly not true for individual collisions. 

II. FORMULAS AND CALCULATIONS 

In this section we evaluate the transport coefficients 
for the rough-sphere gas from the general formal kinetic 
theory of Wang Chang and Uhlenbeck and of Taxman. 
In  this way we can investigate individual terms, 
neglected or approximated by Mason and Monchick, 
to gain some insight into their physical foundations. 

We first write the general formulas in Wang and 
Uhlenbeck's semiclassical form, with the understanding 
that the summations over internal energy states are 
to be replaced by integrations over angular velocities. 
The formulas are expressed in terms of a collision be- 
tween two molecules initially in internal energy states 
i and j ,  which are scattered (in the center-of-mass 
system) through a polar deflection angle x and azi- 
muthal angle a, and end up in internal states k and 1. 
The differential cross section for this process is 1;pl, 

which is a function of X, a and the initial relative speed 
g. The relaxation time 7 is 

ijkl 

where n is the number density, Cint=#k is the internal 
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heat capacity per molecule, and 

Qint=C exp(-e;), ( 3 )  
I 

dCl= exp(--y2-E;-q)gl;jkL sinxdxdcudr, ( 4 )  

in which €3 is the internal energy of the ith internal 
state divided by kT,  -y2=mmg"/(4kT), and A E = € k +  

€2- €;-ti. The self-diffusion coe5cient D11, is9 

DII-'= $P (rmk T )  -fQint4c 1(y2- w' ~ 0 ~ x 1  a, ( 5 )  

where -y' refers to the relative velocity after collision. 
The formula given in reference 5 differs by the re- 
placement of y' by y. The coefficient of shear viscosity 
q is 

q-l= g(rmkT)-IQint-2x /[v4 sin? 

iiLl 

i j k l  

+ ( A t ) z ( ~ - $  sink)ldSZ. (6) 

The two coefficients of heat conduction are more 
complicated : 

Xw[l -  uZ/(XZ) J=75k2T/(8mX) 

+ 1% TCht Y /  (4mXZ) y (7) 

Xht[ 1-  P/ ( X Z ) ] =  $cin?T/ (mZ) 
+ 15k Tcht Y/  (4mXZ). (8) 

The integrals X ,  Y ,  and 2 are rather complicated, 
but X and Y can be written without approximation in 
terms of T and q, as follows6: 

X=SRT/(2q) +25cht/(12nk~),  (9) 

Y= S c i , t / ( h k ~ ) .  ( 10) 

The integral 2 is more difficult, and approximations 
must be made in order to express it in terms of measur- 
able quantities? The exact expression is 

Z= 4(  k T / . ~ m )  fQint-' E;-  Z) [ - #AE+T~(E;- ~ j )  
i j k l  /( 

- v ' ( e k - E l )  CosXW, ( 1 1 )  
where 

C = Q h i &  exp(-EJ. (12) 
i 

As far as heat conduction is concerned, the integral Z 
is the heart of the problem. By a series of arguments Z 
was previously given by5 

Zz$[CintT/ (~Dint)]+$[~int /  ( n k ~ ) ] ,  (13) 

where Dht was essentially the diffusion coefficient for 
internal energy. For rough spheres, the same argu- 
ments that led to Eq. (13) lead to Dht=D1l (smooth 

L. Monchick, K. S. Yun, and E. A. Mason (to be published). 

sphere); i.e., to the expression given in Eq. ( lb),  but 
with the correction term in K absent. Specifically, the 
terms in y' and cosx may be expanded in series in AE. 
We note that all terms multiplied by cosx (smooth 
sphere), the zeroth approximation to cosx, vanish 
when integrated over all angles. Therefore, the devia- 
tion, if any, from the smooth-sphere result must come 
from the dependence of the deflection angle x on in- 
elastic collisions. This is confirmed for the rough-sphere 
case by an exact calculation. 

The formulas above already make clear why the 
approximate theory gave At, correct to first order in K ,  
but not Xint. In Eq. (7) for Xk, the only approximations 
necessary involve 2, but since this occurs in a term 
already first order in K (because of the presence of Y )  , 
a zeroth-order approximation for 2 suflices to give 
correct to first order. However, for Xht, the hst  term 
on the right of Eq. (8) must be evaluated correct to 
first order in R, and so an approximation for 2 accurate 
to first order is necessary. 

To proceed further with the analysis i t  is necessary 
to consider the collision dynamics for rough spheres. 
Let the initial internal states i and j of the two colliding 
molecules be represented by the angular velocities 
o1 and a, respectively, and the final states k and I by 
ol' and a'. That is, 

E;=*zu12= R&12/(8kT), ( 14) 
with similar expressions for q, Q, and €1. Conservation 
of energy and momentum give for the deflection angle 
x the expression 

g.g=gg'cosx 

=g2-2( 1+K)"( g. k)2 
-R( 1+K)-'[2g2-u( g- k x a)], (15) 

where g and g' are the relative velocities before and 
after collision, respectively, k is the unit vector in the 
direction of the line connecting the centers of the 
spheres a t  impact, and o=ol+w. For smooth spheres 
(R=O) the term in brackets vanishes, and g.k= 
g COS(+~X>, from which follows the well-known 
result, g'= g. The change in internal energy on collision 
is given by 
A ~ = y 2 -  Y '2 

= K ( 1 +R) -' (m/k T) @- ( g. k) '- 3. ( 1 - K )  

X (9. k x o) -iu2K( k x 0)7, (16) 

which of course is zero for smooth spheres. All other 
relations needed can be obtained from Eqs. (15) and 
(16) by algebraic manipulation. The integrations over 
trajectories and internal states are best carried out 
using the coordinate system suggested by Kohler." Let 
the angle between 8 and k be #, that between o and 
k be 0,  and that between the planes determined by g 
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and k and by k and (k x o) be 4. The angle between 
8 and g' is as always x. Then we find 

I$' sinxdxdcy = u2 sin$d$da, 

g. k= g COS$, 

I k x o 1 =a sine, 

8. k x a= -go sin$ sin8 cos+. (17) 

The first expression in (17) depends on the fact that 
g, 01, and 02 uniquely determine g', 011, and 021, SO 

that the expression is valid provided the integrations 
over trajectories (i.e., over x and 4 or over II. and 4)  
are carried out at fixed values of 8, 01, and 0 2 .  Because 
of this the summation over internal states can be re- 
placed by an integration over d o l  and d ~ .  If we let 
oz+ol= o and 02- o1= 2v, then doldo2= dodv, and 

do= w2do sinOdOd+, 

dv= v2dv sinO'dO'd+', (18) 

where 8' and 4' are defined analogously to 8 and 4. 
The integrations in Eqs. ( 3 )  and (4) become 

Qint= ( I / 2 T ) ' ,  (19) 

1 * * - dQ = Jmdyy3 exp ( - y2) [ "d$r2 sin$ c o s $ p a  
i j k l  0 

The integrations in Eqs. ( 2 )  , (5), (6) , and (1 1) can 
now be carried out in straightforward fashion. 

Let us first consider the integration in Eq. (5) , which 
determines Dll. This involves the integral 

Q i n t - 2 x  / ( y 2 - ~ y '  cosx)dQE (y2-yy' COSX), (21) 
i j k l  

which, on substitution from Eq. (15) for yy' cosx, 
yields 

(7'- 77' cosx ) = ( 1 +K) (2  ( y k) 2+ 2 K y 2 )  

= (l+K)-'(l+2K) (r2), ( 2 2 )  

the term in ( y- k x o) from (15) going to zero because 
of the integration over 4 and 8 which is equivalent to a 
sum over all directions of the vectors o and v. The 
term (y.k)2 in Eq. (22 )  is the smooth-sphere term, 
and in fact gives the same value for both smooth and 
rough spheres on carrying out the integrations. For 
rough spheres, however, it is reduced by the factor 
(l+K)-' appearing in ( 2 2 ) .  The term K y 2  represents 
just the extra backward scattering due to the roughness 
of the spheres, since the extra sideward scattering con- 

tributes nothing to cosx. It may be verified from this 
that to first order in K ,  y' may be replaced by y, as 
was suggested by the approximate model of Mason 
and Monchick. This suggests an analogous model in 
which all collisions are elastic, but a fraction fr have 
an excess backward scattered component over smooth- 
sphere scattering and a fraction f r / 2  have an excess 
sideward component. The fraction (1 - f r p - f r )  repre- 
sents specular scattering (smooth-sphere collisions). 
We can then easily compute the correction for DII as 
follows : 

(+YY' cosx)= ( l - j r /Z- fr )  (y2(l- COSX) )8  

+fz/2(r2(1- cosx) >rn+fr(T2(1- cosx) >r, (23) 
where the subscript s refers to specular or smooth- 
sphere scattering, and the subscripts T and ~ / 2  refer 
to backward and sideward scattering, respectively. It 
is well known that (COSX)~= 0, and if we set (COSX)~/Z= 0 
and (cosx),= - 1, then Eq. ( 2 3 )  becomes 

(Y~-'YY' cOsx)=[(1-f~> +2f=l(?'2)7 (24)  

the first term in brackets representing the specular and 
sideward scattering contributions, and the second 
term representing the backward scattering. (The 
sideward scattering actually contributes nothing and 
could have been left out of the discussions.) Comparing 
these terms with the corresponding terms of Eq. ( 2 2 )  
we find that both terms give the resultf,=K(l+K)-'. 
The fact that both terms yield the same value of fr 

indicates that this simple model is self-consistent. This 
result is valid to all orders of K, not just first order, to 
avoid the difficulty of "fractions" becoming greater 
than unity for large K. 

A similar result holds for the viscosity, which involves 
the integral 

(y4 sin2x++ (A€) 2- 3 ( A E ) ~  sin2x). (25)  

To first order in K ,  the two terms involving 
cancel when the integrations are carried out. It is easy 
to see why this happens in terms of our simplified 
model of specular scattering plus excess backward and 
sideward scattering. The terms in ( A E ) ~  must always 
be first order in K ;  so that to evaluate (Ae2sin2x) to 
first order in K ,  we may write it ((Ae)2)(sin2x) and 
use a zeroth order approximation for (sin2x)), namely 
the specular result, (sin2x)s=$. Thus the two terms 
involving (Ae) cancel to these approximations. 

Introducing the simplified model again, with f.,a 
and j,, denoting the fraction of excess sideward and 
backward scattering, the integral (25 )  becomes 

(y4 sin'x) = ( 1 -frl2--fr) (y4 ~ i n ~ x ) ~ + f ~ n  (y4 sin2x )+ 

+fir (y4 sin2x Z. (26)  

Since (sin2x),= $ ( ~ i n ~ x ) , / ~ =  1, and (sin2x),=0, we see 
that the excess backward scattering decreases the cross 

I 
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section (increases the viscosity) and the excess side- 
ward scattering increases the cross section (decreases 
the viscosity). The latter effect dominates, but the net 
effect is small since the exact correction factor to the 
cross section is known to bee.’ ( l + y K )  (1+K)-2= 
1+$K+. - 0 .  Comparing this with Eq. (26) and using 
our previous result, f,=K(l+K)-’, we find that 
f,,=@C(1+R)-2, where we have kept higher orders 
of K only to avoid “fractions” greater than unity. 
(The analogy for q is not exact to higher orders in R, 
unlike that for Dll, because we have suppressed the 
term in (AE)~ . )  

Lest our analogy seem too arbitrary, i t  should be 
remembered that the scattering cross section may 
always be analyzed into a smooth-sphere scattering 
term plus a deviation. The deviation may be analyzed 
into components which have maxima at  given angles x. 
Since we have supposed that only two moments of 
cosx are available, we may only analyze the deviation 
into two components. This is allowable in the rough- 
sphere case since, as we have seen, the deviations from 
the approximate formulas of Mason and Monchick5 
come, to first order in K,  not from terms involving 
powers of y’ and A€, but from the deviation of the 
deflection angle x from the smooth-sphere value. The 
analogy proposed here is also only a hst-order model 
since we have supposed all collisions elastic, e.g., 

Finally, we consider the integral Z, which determines 
Xint. In  the expression for 2 given in Eq. (11) , the term 
in A€ can be converted to a term in and hence to 
T by permuting variables? Hence no approximation is 
involved in evaluating this term. The crucial part of 2 
is thus the integral 

y‘= y. 

((~i- S) [ ( E ; -  ~ j ) 7 ~ -  (a - E I )  77’ COSX] ). (27) 

The part that is troublesome in (27) is the factor 
( ~ E - E z ) ,  since this refers to internal states after collision. 
Converting to the rough-sphere system, we find that 

( ~ i - ~ j )  ( Q - C L )  = (mKa2/8KT)2(o.~) 

X[U*V- (2/a) (l+R)-*v*kx 8 
+( 1fR)”v- k x k x 01, (28) 

(29) 
where 

v*k x k x O=W cod C O ~ ‘ - U * Y .  

On integrating over all directions of o and v we tind 
that the term in v* k x g cancels the term in vw coSeX 
cod’, leaving finally 

( ( € 6 - E j )  (€i-€j)[y2- (K-1) (l+K)-?r’ COSX]). (30) 

The remaining integrations can be carried out to yield 
the result of Pidduck, which need not be reproduced 
here. We may now compare with the approximate 
formula,6 

( C i n J K )  (y2- yy’ cosx ). (31) 

The bracket expression in Eq. (31) is just proportional 
to the cross section for self-diffusion. It may be verified 
that Eq. (30) can be similarly reduced to 

(CinJK) (7’- (K-1) (I+R)-Lur’ ~ 0 s ~ ) .  (32) 

This is valid to all orders of K,  and is strongly reminis- ,~~ . 
cent of the expression derived by Mason and Mi%- .F 

chick5 for the case when resonant collisions may occur. 
For this case two molecules exchange their internal 
energies without loss, so that ek=cj and tl=ei, instead 
of E k = C ,  and q=€j as for an elastic collision. If the 
probability of exchange is Pex, then (27), which is 
general and is not restricted to the rough sphere case, 
can be written as 

((€4 (€r-E,)[Pex(y2+7Y’ cosx)+(l- Pex) 

x (Y~-YY’ COSX)])= ((G-z) ( C i - E j )  

X[y2- ( 1 - 2 P e x ) ~ ~ ’  COSX]). (33) 

Equation (32) may be written in this form if we re- 
place Pex by (l+K)-’, the value of Pex coming entirely 
from the o - v  term of Eq. (29). However, the analogy 
is not complete. P, for rough spheres is not the prob- 
ability of exchange, but the fraction of energy ex- 
changed. Equation (32) states that for given values of 
w ,  v, and y the quantity e , - q  in the mean is multiplied 
by a factor of (R- 1) ( l+K)-Lin other words, that 
the internal energies of the two colliding molecules 
tend to equalize. For finite values of Pex in the case of 
polar molecules, the region where x=O is heavily 
weighted and the net effect is to reduce the effective 
diffusion coefficient for the diffusion of internal energy. 
However, in the case of rough spheres, the scattering 
has a sizable backward Scattering component. The net 
effect is to increase the internal diffusion coe5cient. 
This latter effect is not born out by experiment with 
the possible exception of hydrogen at  high tempera- 
turess However, the anomalous hydrogen result may 
be due to some concealed experimental error. 

m. DISCUSSION 

I n  summary, we have shown that the peculiar trans- 
port properties of a rough-sphere gas can be understood 
in first approximation as the result of two effects: (1) 
an enhancement of the backward and sideward scatter- 
ing over that for smooth spheres; and (2) an apparent 
resonant exchange of internal energy on collision of 
two rough spheres, with a probability between 0.6 and 
1.0. It is to be emphasized again that these effects are 
really only analogies that are true in an average sense. 
Since molecules interact with potentials that tail off 
more slowly than the hard-sphere potential, (1) is 
probably a property only of rough spheres with the 
possible exception of Hz. (2) may be a more widespread 
property (as is the case, for instance, for polar mole- 
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d e s 5 )  but since the scattering for real molecules 
probably has less of a backward scattered component 
the net effect is generally to decrease the thermal 
conductivity rather than to increase it. Since the effects 
are, for the most part, peculiar to rough spheres and 
are not expected to operate for most real molecules, 
we believe that the present results support the View 
that the discrepancies between the exact rough-sphere 
results and the approximate theory of Mason and 

Monchick are due to the special properties of the rough 
sphere model. 

As an incidental result, we have verified that the 
formal kinetic theory of Wang Chang and Uhlenbeck 
and of Taxman does yield the known results for rough 
spheres, which were derived by a more specialized 
method. While this result is hardly surprising, it a t  
least indicates that no serious errors exist in the formal 
kinetic theory expressions. 

I 
I 


